
Chromosome structure and gene expression 
 The chromosomes of multicellular animals have a regular and inheritable physical 
organization.  This was first recognized in studies dating back to the 1890’s on the lampbrush 
chromosomes in amphibian oocytes (Fig.1) and the polytene chromosomes of insects. 
Subsequent studies have shown that the architectural principles inferred from analysis of 
lampbrush and polytene chromosomes are universal features of chromosomes throughout much 
of the animal kingdom.  The key organizational principle is the subdivision of the chromatin 
fiber into a series of independent looped domains, called “TADs.” The arrangement of TADs 
along the chromosome tend to be invariant and are largely independent of the cell type or 
developmental stage.  This regular and inheritable organization is a reflection of the underlying 
mechanism of TAD formation.  TADs are separated from each other by special elements called 
boundaries or insulators.  While these elements have been found in many different species, they 
have been most fully characterized in Drosophila. Fly boundaries span DNA sequences of 150 
bp to 1.5 kb in length and contain one or more nucleosome-free nuclease-hypersensitive regions.  
These nuclease-hypersensitive regions are targets for a large collection of DNA binding proteins 
that have been implicated in boundary function.  
 Boundary elements in flies are not only responsible for organizing the chromatin fiber, they 
also have genetic activities.  When interposed between enhancers or silencers and target 
promoters, boundary elements block regulatory interactions This insulating activity provides a 
mechanism for delimiting units of independent gene activity: genes located between a pair of 
compatible boundaries are subject to regulatory interactions with enhancers/silencers present in 
the same chromosomal interval, while they are insulated from the effects of enhancers/silencers 
located beyond either boundary in adjacent regulatory neighborhoods.  Genetic studies suggest 
that the insulating activity of boundary elements is a consequence of subdividing the 
chromosome into a series of topologically independent domains. Organizing the chromatin fiber 
into looped domains enhances contacts between sequences within the loop, while it suppresses 
contacts with sequences outside of the loop.   
    Our current research efforts are aimed at determining how boundaries function.  A 
combination of genetic and molecular studies indicate that fly boundaries are functionally non-
autonomous and that their activities in both loop formation and gene regulation depend upon 
their ability to engage in direct physical interactions with other boundaries.  Physical interactions 
are mediated by the DNA binding proteins associated with potential pairing partners.  Many fly 
chromosomal architectural proteins (Pita, Zipic, CTCF) form homomultimers.  Consequently, if 
two boundaries share binding sites for one or more of these proteins, the two boundaries can be 
linked together by the multimer. In other cases, two different proteins can link two boundaries 
together by forming heteromeric complexes. 
   Boundary pairing interactions have several important properties which we are investigating. 
These include partner preferences and orientation dependence.  The properties have important 
implications both for the formation of TADs, as well as TADs within TADs, and for long 
distance regulatory interactions.  
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Fig. 1.  Lampbrush chrosomoes.  When lampbrush chromosomes are stretched pairing 
interactions between paired boundary elements can be broken.  (Callan, 1963).  
 
 
 
 
 
 



 
 
 

 
 
Fig. 2. Pairing interactions between a dual lacZ-GFP reporter (inserted at -142 kb) containing a 
homie boundary and the homie and nhomie boundaries in the eve-skipped (eve) locus can bring 
the transgene in close proximity to the eve locus. The eve enhancers can then activate expression 
of the reporter in early embryos; however, because boundary:boundary pairing interactions are 
orientation dependent, only one reporter (in this case lacZ) is activated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 3.  MicroC of the eve locus and the transgene insertion site at -142 kb. Small dark blue 
arrows – insulators up and downstream of hebe that appear important to demarcate interaction 
domains between –142kb and eve.  Large blue arrow - endogenous nhomie.  Large red arrow – 
homie, either endogenous or in the transgene.  The direction of arrows follow established 
convention on nhomie/homie, and do not reflect orientation of insulator protein binding motifs 
per se.  Gray boxes – enhancers.  A) microC map of the control line LlambdaG Z5.  Scaled 
cartoons of the two loci of interest are shown directly below the microC map, and an unscaled 
blowup of the elements of interest at each locus is provided.  Within the microC map of the 
entire locus, a zoom-in of the off-diagonal interaction between –142kb insertion cassette and the 
endogenous eve locus is shown.  Note a slight increase in interaction frequency (compare to 
Figure 1A).  B, C) microC map of LhomieG Z5 and GhomieL Z5, respectively.  The only 
difference between the two lines is the orientation of the transgenic homie, as indicate below 
each Micro-C map.  Blow up of the off-diagonal interaction between –142kb and eve, including 
scaled cartoons denoting features of interest on the top right corner.  Note the changed pattern of 
interaction with endogenous eve locus due to the orientation switch.  D) “Virtual 4C” maps 
obtained from microC maps of “B” on top, and “C” bottom panels, respectively.  The 
viewpoints are shown from either the lacZ gene in orange or the GFP gene in green for both 
panels.  Note the increased interaction of either gene with endogenous eve depending on the 
change of orientation of homie in each cassette. 


